What are we DOIng about Dynamic Data at Ocean Networks Canada?

Portage Network Webinar 2020-11-17

Ocean Networks Canada, ROR: 05qkn003
University of Victoria, ROR: 04s5mat29

Presenters:
- Reyna Jenkyns, ORCID: 0000-0001-6975-6816
- Melissa Cuthill, ORCID: 0000-0002-3987-865X
- Chantel Ridsdale, ORCID: 0000-0001-7218-1232

A UNIVERSITY OF VICTORIA INITIATIVE
• ONC data are very **dynamic** due to continually accumulating data streams, data reprocessing and data product code versioning
• Highly **heterogeneous** – fixed and mobile platforms, instrument types, data formats and processing levels, real-time vs autonomous
Setting the Stage

R13: Data Discovery and Identification - The repository enables users to discover the data and refer to them in a persistent way through proper citation.

COPDESS (Coalition for Publishing Data in the Earth and Space Sciences) - Commitment Statement includes an emphasis on data citation. ONC is a signatory.

2018 - Research Data Management funding program introduced following community consultation with an emphasis on FAIR. 9 projects awarded funding ($3.2M total)

MINTED = Making Identifiers Necessary for Tracking Evolving Data
RDA Data Citations WG Guidelines

Research Data Alliance:
- over 10,000 members from 145 countries
- a neutral space for members to develop & adopt infrastructure that promotes data-sharing & data-driven research

RDA Data Citations WG Guidelines: Rauber, A., et al, Identification of Reproducible Subsets for Data Citation, Sharing and Re-Use (2016)

- Abstract Excerpt: Research data is changing over time as new records are added, errors are corrected and obsolete records are deleted from a data set. Scholars rarely use an entire data set or stream data as it is, but rather select specific subsets tailored to their research questions. In order to keep such experiments reproducible and to share and cite the particular data used in a study, researchers need means of identifying the exact version of a subset as it was used during a specific execution of a workflow, even if the data source is continuously evolving. ...we present 14 recommendations on how to adapt a data source for providing identifiable subsets for the long term, elaborated by the RDA Working Group on Dynamic Data Citation (WGDC). The proposed solution is based upon versioned data, timestamping and a query based subsetting mechanism.

- R1 - Data Versioning, R2 - Timestamping, R3 - Query Store Facilities, R4 - Query Uniqueness, R5 - Stable Sorting, R6 - Result Set Verification, R7 - Query Timestamping, R8 - Query PID, R9 - Store the Query, R10 - Automated Citation Texts, R11 - Landing Page, R12 - Machine Actionability, R13 - Technology Migration, R14 - Migration Verification
The FAIR Principles

Guidelines for data publishers to improve data discovery and reuse

Data can be discovered by interested parties

- PIDs
- rich metadata
- searchable

Data & metadata are in standardized formats

- file formats
- metadata schemas
- controlled vocabularies

Data is retrievable using its PID

Or, if the data is gone, the PID still links to the metadata that tells you what happened to it.

Data is optimized for re-use

- license
- provenance
- community standards
Research Organization Registry

- Persistent identifiers for research organizations
- Launched in January 2019
- ~99,000 organizations as of November 2020
TRUST Principles

Transparency
To be transparent about specific repository services and data holdings that are verifiable by publicly accessible evidence.

Responsibility
To be responsible for ensuring the authenticity and integrity of data holdings and for the reliability and persistence of its service.

User Focus
To ensure that the data management norms and expectations of target user communities are met.

Sustainability
To sustain services and preserve data holdings for the long-term.

Technology
To provide infrastructure and capabilities to support secure, persistent, and reliable services.

“.. to make data FAIR whilst preserving them over time requires **trustworthy digital repositories** (TDRs) with **sustainable governance** and **organizational frameworks**, **reliable infrastructure**, and **comprehensive policies supporting community-agreed practices**. TDRs, with their clear remit to actively **preserve data** in response to changes in both technology and stakeholder requirements, play an important role in **maintaining the value of data**. They are held in a position of trust by their users as they **accept the responsibilities of data stewardship.**”

MINTED

- Implement **dynamic data citations**, applying 14 recommendations from RDA Data Citations WG output which covers versioning, query store, resolver landing page, technology migration resilience
- Improve **provenance, versioning, and ISO 19115 metadata records** as they relate to data citation framework
- Utilize **DataCite** services for registering datasets
- Introduce RORs for organizational dataset contributors and user accounts, leveraging ROR frameworks and advice
- Deliver citation text provision service and a citation resolver services to **National Data Services Framework**
- **Design challenge** given the permanent nature of DOIs – important decisions for **dataset granularity** and **sustainable architecture**
- **Cultural challenge** with agile and innovative culture
System Architecture

System architecture description: The ONC Oceans 2.0 system (in blue), and third party sources and applications (in orange). Dotted lines indicate aspects that need to be added, while all ONC components would be modified. The ONC components can be directly controlled via the project, with expected modifications to include a new data model and tables within the database, additional web services, integration of third party APIs, and data citation features.
Data Granularity

- Challenges in dataset granularity **boundary** decisions
 - By time?
 - By geography?
 - By instrument type?
 - By platform?
 - By data product level?

- **Constraints** to consider from DataCite metadata kernel, RDA guidelines, suitability to ONC data architecture, data partner attributions, end-users

- **RDA Data Granularity WG**
 - compatible community conventions are important for interoperability networks of repositories, but many diverse existing approaches and terminology interpretations; granularity decisions also impact discovery, access, citations and more.
 - BoF at RDA Plenary 16, case statement to be submitted soon
What is a dataset at ONC?

1 Dataset = 1 Deployment of 1 Device

i.e. Device A at Site B, from Date X to Date Y

From this... ...to this.
How and when to initially mint a dataset?

QUESTIONS:
● How soon after an instrument is deployed and data is streaming in data?
● How to automate ensuring all required metadata is in database and deemed correct?
● Manual or automated integration into our instrument workflows?
● Wait until a query exists in the query store?
● Mass or batch minting of existing datasets in repository?
● Data steward peer reviews and quality assessments are complete?

DECISION – Daily scheduled job created to regularly check if there is a new deployment for any devices and register DOI if all “minimum” metadata is populated
 ● minimum is a combination of DataCite requirements plus fields determined necessary at ONC, changes will be accounted through versioning.
DataCite DOI Minting - Automation

Define Job parameters
Schedule Job
Monitor Job Execution

Automatically detects and mints DOIs for new occurrences of datasets with sufficient metadata: data files archived, position coordinates, data products assigned, station metadata defined, organizational metadata defined
Automated Abstract Deconstructed

Construction: The **DeviceName** was deployed on **SiteDeviceDateFrom at/on SearchTreeNodeName. SearchTreeNodeDescription.** This device is a **DeviceCategoryName. DeviceCategoryDescription.** It was deployed on a **Fixed/Mobile/Profiling** platform. Data from this deployment were archived and made available through Ocean Network Canada's Oceans 2.0 digital infrastructure, with quality assurance and derived data products following established practices.

Example: The **WET Labs ECO FLNTUS 4670** was deployed on **2019-05-16 at Upper Slope. Upper Slope is a location within Barkley Canyon, which is located on the upper continental slope.** This device is a **Fluorometer Turbidity.** Fluorometer Turbidity instruments measure chlorophyll fluorescence and turbidity within the same volume of seawater. The instrument uses a light emitting diode (LED) to provide an excitation source. The fluoresced light is received by a detector at a particular angle from the LED source, and uses an interference filter to discriminate against scattered excitation light. Turbidity is measured at the same time, by detecting scattered light from a LED, which is positioned at the same angle as the chlorophyll fluorescence. It was deployed on a **fixed platform.** Data from this deployment were archived and made available through Ocean Network Canada's Oceans 2.0 digital infrastructure, with quality assurance and derived data products following established practices.
Data Stewardship Verification - Device Workflows

https://data.oceannetworks.ca/DeviceListing?DeviceId=13112&Tab=workflow
Benefits of PIDs for Datasets

★ Using PIDS makes finding and citing data EASY

Compare with our previous approach to data citation...

THEN

“Should publications include the option of a data citation, please consult the metadata information provided for the exact citation(s) associated with the data received from Ocean Networks Canada. An example citation might read:

Ocean Networks Canada Data Archive, http://www.oceannetworks.ca, bottom pressure data from Clayoquot Slope from 25 January 2010 to 25 May 2010, University of Victoria, Canada. Data downloaded on 17 June 2013.”

NOW

https://doi.org/10.34943/a53cf191-6916-4d8d-8c6e-f56244016a40
DataCite Metadata

Title
Discovery Passage Hydrophone Deployed 2020-07-15

DOI
10.34943/2d4edb3d-f8f5-4f96-a212-b418e1bf70e9

Abstract
The Ocean Sonics icListen AF Hydrophone 2523 was deployed on 2020-07-15 at Discovery Passage. Discovery Passage is a channel that is part of Inside Passage. It is located between Vancouver Island and the Discovery Islands and north of the Georgia Strait. This device is a Hydrophone. Hydrophones are devices containing transducers that convert underwater sound waves into electrical signals. They are acoustic instruments that can process data while they are being collected to produce calibrated waveform data. Hydrophones are typically used to study vocalizations of marine mammals, ship traffic and ambient noise. It was deployed on a fixed platform. Data from this deployment were archived and made available through Ocean Network Canada’s Oceans 2.0 digital infrastructure, with quality assurance and derived data products following established practices.
Resource Type

One Deployment

Rights

Formats

acc, txt, mat, mp3, pdf, qaqc, csv, flac, png, json, wav, an

Geolocations

| geoLocationPoint | (50.020767, -125.23535) |

Contributors

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributor</td>
<td>Ocean Networks Canada Society</td>
</tr>
<tr>
<td>DataManager</td>
<td>Ocean Networks Canada Society</td>
</tr>
</tbody>
</table>
Citation

DOI Citation

Data Links
Download data using Data Search
View device details for Ocean Sonics icListen AF Hydrophone 2523
Download latest ISO 19115 XML metadata

Version History

<table>
<thead>
<tr>
<th>DOI</th>
<th>Reason</th>
<th>Date Created</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.34943/2d4edb3d...</td>
<td></td>
<td>2020-08-10 22:40:22.339</td>
</tr>
</tbody>
</table>
DataCite Metadata Record

DataCite Fabrica

Ocean Networks Canada Society / DOIs

10.34943/2d4edb3d-f8f5-4f96-a212-b418e1bf70e9

URL

https://data.oceanetworks.ca/DatasetLandingPage?did=10.34943/2d4edb3d-f8f5-4f96-a212-b418e1bf70e9

Metadata

Discovery Passage Hydrophone Deployed 2020-07-15 Dataset

Ocean Networks Canada Society

One Deployment published 2020 via Ocean Networks Canada Society

The Ocean Sonics icListen AF Hydrophone 2523 was deployed on 2020-07-15 at Discovery Passage. Discovery Passage is a channel that is part of Inside Passage. It is located between Vancouver Island and the Discovery Islands and north of the Georgia Strait. This device is a Hydrophone. Hydrophones are devices consisting of transducers that convert underwater sound waves into electrical signals. They are acoustic instruments that can process data while they are being collected to produce calibrated waveform data. Hydrophones are typically used to study vocalizations of marine mammals, ship traffic and ambient noise. It was deployed on a fixed platform. Data from this deployment were archived and made available through Ocean Network Canada’s Oceans 2.0 digital infrastructure, with quality assurance and derived data products following established practices.

https://doi.org/10.34943/2d4edb3d-f8f5-4f96-a212-b418e1bf70e9

Citation

Challenges: diverse cases

Supporting the DataCite metadata kernel and ISO 19115 requirements, especially for automatically generated records, took some tweaking of ONC’s existing metadata practices - what we stored, where, and how.

- Geospatial metadata: fixed, mobile, and remote sensing instruments
- Data Attributions: data agreement partners with shared responsibility for instruments and their data products
 - including Party Identifiers: ORCID and ROR
- Data Subsets: how to ensure reproducibility by supporting re-creation of previously downloaded subsets of datasets
- API integration: DOIs and Query PIDs, citations, full metadata records
- Versioning: how to display the provenance of evolving datasets
Geospatial case: Mobile Device - Ferry Thermosalinograph

- Geographic extent metadata needed for DataCite and ISO 19115
- For mobile devices, geolocations field defines a "bounding box" instead of a fixed point

```
<table>
<thead>
<tr>
<th>Geolocations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>North Bounding Latitude</td>
<td>49.13045</td>
</tr>
<tr>
<td>South Bounding Latitude</td>
<td>48.690001</td>
</tr>
<tr>
<td>East Bounding Longitude</td>
<td>-123.082609</td>
</tr>
<tr>
<td>West Bounding Longitude</td>
<td>-123.511584</td>
</tr>
</tbody>
</table>
```

Contributors

- Distributor: Ocean Networks Canada Society
- Data Manager: Ocean Networks Canada Society
Geospatial case: Remote Sensing Device - Oceanographic RADAR

Geographic Extent Metadata

- needed for DataCite and ISO 19115 metadata fields
- existing metadata at ONC only captured physical location of instrument, not necessarily representing the geographic coverage of dataset
- implemented geographic extent metadata framework (data model, user interface, service integration) for remote sensing instruments
- developing procedures for calculating and populating geographic extent for these instruments (e.g., radars, acoustic instruments) – initially manual, but goal is to automate the algorithms based on data acquisition configuration parameters
Responsible Parties - RORs in DataCite

- Support for ROR introduced in *DataCite Metadata Kernel 4.3* (August 2019)
- usable as nameIdentifier or affiliationIdentifier
- new Affiliation subproperties (formerly free text) for Creator and Contributor:
 - affiliationIdentifier
 - affiliationIdentifierScheme
 - schemeURI
- FundingReference property:
 - ROR added as option for funderIdentifier subproperty ‘schemeURI’
- Publisher still doesn’t support affiliation...yet
Data Partner Attributions: RORs in action

- Integrated into Oceans 2.0 data model & UI, DataCite metadata, & Landing Page

Ocean Networks Canada Dataset Landing Page

DataCite Metadata

Title
Gascoyne Inlet Conductivity Temperature Depth Deployed 2019-06-19

DOI
10.34943/5218ac5d-028c-47b8-a381-59979cdc1954

Abstract
The AML CTD Metrec X 50233 was deployed on 2019-06-19 at Gascoyne Inlet. Gascoyne Inlet is an inlet within Nunavut, on the southwestern tip of Devon Island, and is nearby to Cape Ricketts, Caswell Tower and Cape Liddon. This device is a Conductivity Temperature Depth. Conductivity Temperature Depth (CTD) is an instrument package that contains sensors for measuring the conductivity, temperature, and pressure of seawater. Salinity, sound velocity, depth and density are variables that can be derived from sensor measurements. CTDs can carry additional instruments and sensors such as oxygen sensors, turbidity sensors and fluorometers. It was deployed on a platform. Data from this deployment were archived and made available through Ocean Network Canada digital infrastructure, with quality assurance and derived data products following established practices.

Creators

Organizational
Defence Research and Development Canada (DRDC)

Organizational
Ocean Networks Canada Society

Date Created
2020-03-10

ROR Registry Search

https://ror.org/00hgy8d33

Defence Research and Development Canada
DRDC, RDDC, RECHERCHE & DÉVELOPPEMENT POUR LA DÉFENSE CANADA

Website

Other Identifiers
GRID 1463.0
ISNI 0000000106929982
Crossref Funder ID 50110002966
Wikidata Q1182987

Canada Government
Data Subsets

What if you don’t need the entire dataset?

Many subsets of data that can be extracted from a single dataset, defined by: sensor, time range, data product, file format, etc...

In these cases, citing the DOI of the full dataset is inadequate for reproducibility.

Recall the 14 recommendations of the *RDA Dynamic Data Citations WG Guidelines Identification of Reproducible Subsets for Data Citation, Sharing and Re-Use* (2016):

- **R3 - Query Store Facilities**: Provide means for storing queries and the associated metadata in order to re-execute them in the future
- **R7 - Query Timestamping**: Assign a timestamp to the query based on the last update to the entire database (or the last update to the selection of data affected by the query or the query execution time)
- **R8 - Query PID**: Assign a new PID to the query if either the query is new or if the result set returned from an earlier identical query is different due to changes in the data. Otherwise, return the existing PID of the earlier query to the user.
- **R9 - Store the Query**: Store query and metadata (e.g. PID, original and normalised query, query and result set check-sum, timestamp, superset PID, data set description, and other) in the query store.
Enter the Query PID!

- Every data search (query) in Oceans 2.0 is saved in the database and labeled with its own local identifier, the ‘Query PID’.
- Query PIDs can be used like a DOI in the Oceans 2.0 Landing Page Resolver to view a landing page with additional details specific to that search.
Data Search in Oceans 2.0: *Dataset selection*
Data Search in Oceans 2.0: Subset Query Details
Barkley Canyon Upper Slope Fluorometer Turbidity Deployed 2019-05-16

DOI: 10.34943/fm04d675-3df2-4dc3-810b-cb365f7ec492

The WET Labs ECO FLNTUS 4670 was deployed on 2019-05-16 at Barkley Canyon Upper Slope. Upper Slope is a location within Barkley Canyon, which is located on the upper continental slope. This device is a Fluorometer Turbidity. Fluorometer Turbidity instruments measure chlorophyll fluorescence and turbidity within the same volume of seawater. The instrument uses a light emitting diode (LED) to provide an excitation source. The fluoresced light is received by a detector at a particular angle from the LED source, and uses an interference filter to discriminate against scattered excitation light. Turbidity is measured at the same time, by detecting scattered light from a LED, which is positioned at the same angle as the chlorophyll fluorescence. It was deployed on a fixed platform.

Data from this deployment were archived and made available through Ocean Network Canada's Oceans 2.0 digital infrastructure, with quality assurance and derived data products following established practices.

Data Product
Time Series Scalar Data

Query Date Created
2020-05-08T17:26:27.733Z

Query Date From
2019-06-20T00:00:00.000Z

Query Date To
2019-06-21T00:00:00.000Z

Variables
All

Format
CSV

Data Product Options
Data Gaps: Fill missing/bad data with NaNs (Not a Number)
Quality Control: Clean Data
Processing: (Type/Period) Average / 1 Minute

Citation
Citation Text and Metadata Web Services (API)

DOIs and Query PIDs can also be used with the Oceans 2.0 API to retrieve the data citation formatted according to the ESIP Data Citation Guidelines for Earth Science Data, v.2:

DOI

https://data.oceannetworks.ca/api/citationText?method=get&doi=10.34943/115343a9-6d88-4f6c-a88b-9a7b17ad53e0

Query PID

https://data.oceannetworks.ca/api/citationText?method=get&queryPid=8297994
Versioning Data

Each batch is given a name & reason.

Batches contain:

1. Metadata Triggers
2. Data Versioning Tasks
3. DataCite DOI Updates

Example metadata triggers:

- calibration formula change
- device attribute change
- parser change

Triggers automatically identify affected datasets, or data steward can manually add datasets affected.

Versioning tasks currently supported are

- reprocessing to parse data (e.g., after formula or parser fix)
- re-postprocessing of derived data products (e.g., after algorithm fix or parameter change)
- file uploads (to fill gaps or replace faulty files)
Versioning Data

DataCite DOI updates include

- generation of new DOI that indicates it is the new version of the prior one
- update to the prior DOI xml to indicate it is now the previous version of the new one

The ONC dataset landing page is updated in the Version History section, with the resolved DOI highlighted, and versioning reasons and triggers provided.
Versioning Data: Reprocessing

Use Case: Parsing for sensors on a device were temporarily disabled since the automated QAQC flag system was having issues. This issue was addressed, and then the data have the data reprocessed to fill the gap in our database (raw data was still accumulating, but not being parsed).

Example: WetLabs Fluorometer Turbidity instrument at Folger Pinnacle, deployed 2016-04

Original DOI: https://data.oceannetworks.ca/DatasetLandingPage?doidataset=10.34943/bc5bf185-4b4a-4533-963f-2d98dead60ad

JIRA Ticket created for follow-up action, assigned to Data Steward
Versioning Data: Reprocessing

Batch versioning interface includes support for associating metadata triggers, data versioning tasks (e.g., reprocessing), and DataCite DOI updates.
Versioning Data: *Reprocessing*

Reprocessing can be monitored as it progresses.
Versioning Data: Reprocessing

Gap becoming filled as reprocessing progresses...

New dataset landing page with provenance information:
https://data.oceannetworks.ca/DatasetLandingPage?doidataset=10.34943/1d0c005a-21cd-468e-aceb-1f05f9a04d49
User Documentation

DataCite Metadata

Title
Barkley Canyon Upper Slope Fluorometer Turbidity Deployed 2019-05-16

DOI
10.34943/fa04d675-3df2-4dc3-810b-cb366f7ec492

https://wiki.oceannetworks.ca/display/DP/Data+Citations
Landing Page Discovery
Data Contributor Documentation

Data Partnerships Home
Created by Reyna Jenkyns, last modified by Chantel M Ridsdale on 18-Aug-20

- Overview
- Data Agreements
- Attributions & Credit
 - Data Citations
 - ISO 19115 Metadata Records
 - Individual Metadata Record
 - Metadata Catalog
 - Roles
 - Research Organization Registry
 - Metrics
 - Contact Information

https://wiki.oceannetworks.ca/display/DataPartners/Data+Partnerships+Home
Metrics: DataCite Stats

DataCite Fabrica
Ocean Networks Canada Society

Info Settings Prefixes DOIs

DOIs by year

321 in 2020

2009 2019
PID Graph

- Courtesy of the FREYA project
- Leverages all the different types of PIDs to unambiguously cross-link research outputs
FREYA recognition

ODIN and THOR
Future Plans

Follow-on project proposal planned to be submitted for additional features in fall 2020 - scope definition in progress...

ISO 19115:2014

<relatedIdentifiers>
 <relatedIdentifier relatedIdentifierType="URL" relationType="...">
 </relatedIdentifier>
</relatedIdentifiers>
Questions?
reyna@uvic.ca